cosmology(**kwargs) | Stores all cosmological parameters and performs the computation |
Bases: object
Stores all cosmological parameters and performs the computation of derived quantities (distances, matter power spectra, etc...)
Parameters: |
|
---|
References
[EfstathiouBond99] | (1, 2) G. Efstathiou and J. R. Bond. Cosmic confusion: degeneracies among cosmological parameters derived from measurements of microwave background anisotropies. MNRAS, 304:75–97, March 1999. arXiv:arXiv:astro-ph/9807103, doi:10.1046/j.1365-8711.1999.02274.x. |
[EisensteinHu98] | (1, 2, 3) D. J. Eisenstein and W. Hu. Baryonic Features in the Matter Transfer Function. ApJ, 496:605, March 1998. arXiv:arXiv:astro-ph/9709112, doi:10.1086/305424. |
[Linder03] | E. V. Linder. Exploring the Expansion History of the Universe. Physical Review Letters, 90(9):091301, March 2003. arXiv:arXiv:astro-ph/0208512, doi:10.1103/PhysRevLett.90.091301. |
[Percival05] | (1, 2, 3, 4) W. J. Percival. Cosmological structure formation in a homogeneous dark energy background. AA, 443:819–830, December 2005. arXiv:arXiv:astro-ph/0508156, doi:10.1051/0004-6361:20053637. |
[SmithPeacockJenkins+03] | R. E. Smith, J. A. Peacock, A. Jenkins, S. D. M. White, C. S. Frenk, F. R. Pearce, P. A. Thomas, G. Efstathiou, and H. M. P. Couchman. Stable clustering, the halo model and non-linear cosmological power spectra. MNRAS, 341:1311–1332, June 2003. arXiv:astro-ph/0207664, doi:10.1046/j.1365-8711.2003.06503.x. |
Square of the scale factor dependent factor E(a) in the Hubble parameter.
Parameters: | a (array_like) – Scale factor |
---|---|
Returns: | E^2 – Square of the scaling of the Hubble constant as a function of scale factor |
Return type: | ndarray, or float if input scalar |
Notes
The Hubble parameter at scale factor a is given by \(H^2(a) = E^2(a) H_o^2\) where \(E^2\) is obtained through Friedman’s Equation (see [Percival05]) :
where \(f(a)\) is the Dark Energy evolution parameter computed by f_de().
Compute Growth factor at a given scale factor, normalised such that G(a=1) = 1.
Parameters: | a (array_like) – Scale factor |
---|---|
Returns: | G – Growth factor computed at requested scale factor |
Return type: | ndarray, or float if input scalar |
Hubble parameter [km/s/(Mpc/h)] at scale factor a
Parameters: | a (array_like) – Scale factor |
---|---|
Returns: | H – Hubble parameter at the requested scale factor. |
Return type: | ndarray, or float if input scalar |
Dark Energy density at scale factor a.
Parameters: | a (array_like) – Scale factor |
---|---|
Returns: | Omega_de – Dark Energy density at the requested scale factor |
Return type: | ndarray, or float if input scalar |
Notes
The evolution of Dark Energy density \(\Omega_{de}(a)\) is given by:
where \(f(a)\) is the Dark Energy evolution parameter computed by f_de() (see [Percival05] Eq. (6)).
Matter density at scale factor a.
Parameters: | a (array_like) – Scale factor |
---|---|
Returns: | Omega_m – Non-relativistic matter density at the requested scale factor |
Return type: | ndarray, or float if input scalar |
Notes
The evolution of matter density \(\Omega_m(a)\) is given by:
see [Percival05] Eq. (6)
Computes the matter transfer function.
Parameters: |
|
---|---|
Returns: | T – Value of the transfer function at the requested wave number |
Return type: | array_like |
Notes
The Eisenstein & Hu transfer functions are computed using the fitting formulae of [EisensteinHu98]
Radial comoving distance in [Mpc/h] for a given scale factor.
Parameters: | a (array_like) – Scale factor |
---|---|
Returns: | chi – Radial comoving distance corresponding to the specified scale factor. |
Return type: | ndarray, or float if input scalar |
Notes
The radial comoving distance is computed by performing the following integration:
Scale factor for the radial comoving distance specified in [Mpc/h].
Parameters: | chi (array_like) – Radial comoving distance in [Mpc/h] |
---|---|
Returns: | a – Scale factor corresponding to the specified radial comoving distance. |
Return type: | ndarray, or float if input scalar |
Angular diameter distance in [Mpc/h] for a given scale factor.
Parameters: | a (array_like) – Scale factor |
---|---|
Returns: | d_A |
Return type: | ndarray, or float if input scalar |
Notes
Angular diameter distance is expressed in terms of the transverse comoving distance as:
Derivative of the radial comoving distance with respect to the scale factor.
Parameters: | a (array_like) – Scale factor |
---|---|
Returns: | dchi/da – Derivative of the radial comoving distance with respect to the scale factor at the specified scale factor. |
Return type: | ndarray, or float if input scalar |
Notes
The expression for \(\frac{d \chi}{da}\) is:
Derivative of the redshift with respect to the scale factor.
Parameters: | a (array_like) – Scale factor |
---|---|
Returns: | dz/da – Derivative of the redshift with respect to the scale factor at the specified scale factor. |
Return type: | ndarray, or float if input scalar |
Notes
The expression for \(\frac{d z}{da}\) is:
Evolution parameter for the Dark Energy density.
Parameters: | a (array_like) – Scale factor |
---|---|
Returns: | f – The evolution parameter of the Dark Energy density as a function of scale factor |
Return type: | ndarray, or float if input scalar |
Notes
For a given parametrisation of the Dark Energy equation of state, the scaling of the Dark Energy density with time can be written as:
(see [Percival05]) where \(f(a)\) is computed as \(f(a) = \frac{-3}{\ln(a)} \int_0^{\ln(a)} [1 + w(a^\prime)] d \ln(a^\prime)\). In the case of Linder’s parametrisation for the dark energy in Eq. (?) \(f(a)\) becomes:
Transverse comoving distance in [Mpc/h] for a given scale factor.
Parameters: | a (array_like) – Scale factor |
---|---|
Returns: | f_k – Transverse comoving distance corresponding to the specified scale factor. |
Return type: | ndarray, or float if input scalar |
Notes
The transverse comoving distance depends on the curvature of the universe and is related to the radial comoving distance through:
Lensing efficiency kernel computed a distance chi for sources placed at distance chi_s
Computes the full non linear matter power spectrum.
Parameters: |
|
---|---|
Returns: | pk – Non linear matter power spectrum at the specified scale and scale factor. |
Return type: | array_like |
Notes
The non linear corrections are implemented following [2003:smith]
Computes the linear matter power spectrum.
Parameters: |
|
---|---|
Returns: | pk – Linear matter power spectrum at the specified scale and scale factor. |
Return type: | array_like |
Computes the non linear matter power spectrum at a given angular scale using the Limber approximation
Computes the linear matter power spectrum at the specified scale and scale factor
Sound horizon at drag epoch in Mpc/h
Computed from Equation (6) in [EisensteinHu98] :
where \(R_d\) and \(R_{eq}\) are respectively the ratio of baryon to photon momentum density at drag epoch and equality epoch (see Equation (5) in [EisensteinHu98]) and \(k_{eq}\) is the scale of the scale of the particle horizon at equality epoch.
Sound horizon at recombination in Mpc/h
Computed from Equation (19) in [EfstathiouBond99] :
where \(R_r\) and \(R_{eq}\) are respectively the ratio of baryon to photon momentum density at recombination epoch and equality epoch (see Equation (18) in [EfstathiouBond99]) and \(\eta_{\nu}\) denotes the relative densities of massless neutrinos and photons.
Computes the energy of the fluctuations within a sphere of R h^{-1} Mpc
where
Updates the current cosmology based on the parameters specified in input.
Parameters: |
|
---|
Dark Energy equation of state parameter using the Linder parametrisation.
Parameters: | a (array_like) – Scale factor |
---|---|
Returns: | w – The Dark Energy equation of state parameter at the specified scale factor |
Return type: | ndarray, or float if input scalar |
Notes
The Linder parametrization [Linder03] for the Dark Energy equation of state \(p = w \rho\) is given by: